
Challenging Encapsulation in the Design
of High-Risk Control Systems

 Daniel Dvorak
JPL / California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

1-818-393-1986
Daniel.Dvorak@jpl.nasa.gov

ABSTRACT
In the hardware/software design of control systems it is almost an
article of faith to decompose a system into loosely coupled
subsystems, with state variables encapsulated in device and
subsystem objects. The engineering advantages of such an
approach are so attractive that it is sometimes applied
inappropriately, yielding a design that hides a tangle of special-case
subsystem-to-subsystem couplings behind a façade of modular
decomposition. The limitations of a subsystem/device architecture
become apparent in the design of high-risk control systems—such
as nuclear power plants and planetary rovers—where the world is
full of physical side-effects that have little “respect” for
conventional subsystem boundaries. Here, the very notion of
decomposition by subsystem, and its attendant state encapsulation,
actually complicates the design. Fundamentally, there is a clash
between a subsystem-device-object metaphor and the laws of
physics. A more appropriate architectural approach is to
acknowledge the underlying physics and to elevate the concepts of
state and models to first-class design elements that are not
encapsulated within subsystem objects.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
domain-specific architectures, information hiding.

General Terms
Design.

Keywords
Encapsulation, isomorphism, state, model, control system,
design, architecture.

1. INTRODUCTION
Software systems vary enormously in the extent to which they
interact with the physical world and deal with its subtleties. At
one extreme are enterprise applications such as management
information systems that deal primarily in a tidy world of data
management, queries, and reporting. Such systems are typically
deployed in an environment of plentiful resources — plenty of
data storage, network throughput, electrical power, and air
conditioning. In such an environment most physical side effects
can be safely ignored. For example, powering up a disk drive in a
server room consumes power, generates heat, and imparts a
rotational torque on the disk drive assembly. These are real
physical effects, but we can safely ignore them as irrelevant side
effects when the resources that they affect are virtually unlimited.
In this situation, power and air conditioning and rotational inertia
are all virtually unlimited.
At the other extreme are resource-limited robots such as
unmanned spacecraft and Mars surface rovers. Since the amount
of mass launched into space is a major cost driver for space
missions, these systems are engineered to carry only enough
resources to accomplish mission objectives, plus a small margin.
Mission activities must be designed to operate within tightly
engineered constraints on electrical power, battery energy, non-
volatile memory, communication link throughput, and many other
resources. For example, turning on a camera to take pictures
draws from a limited power budget, consumes non-volatile
memory to store images, and requires the rover basebody to be
pointed appropriately. This activity uses precious resources that
are then not available to other activities. The net result is that in a
resource-limited system many physical side effects become non-
negligible and therefore must be consciously managed; designs
become more complex because the couplings are more numerous
and often cross conventional subsystem boundaries.
This paper compares two architectures with respect to their
suitability for resource-limited control systems. One architecture
is subsystem/device-oriented, having objects associated with
hardware units, such as drive motors and camera, plus objects
associated with traditional engineering subsystems such as
electrical, thermal, and navigation subsystems. This architecture
encapsulates state variables inside such objects—objects that
logically seem to “own” those state variables. The other
architecture is state/model-oriented, having first-class objects
associated with physical states, such as camera temperature and
battery energy, plus objects associated with models of physical
couplings, such as the effect of a heater on power consumption
and the effect of temperature on a sensor measurement. Despite
the appeal of decomposition by subsystem, the structure of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

Presented at OOPSLA 2002

subsystem/device architecture depends on an assumption of loose
coupling that simply doesn’t hold in the realm of resource-limited
systems. Such systems must manage numerous tight couplings of
the real world. Dealing with this in a disciplined way demands an
architecture that acknowledges and adequately represents the
underlying physics of the world.

2. DEVICE/SUBSYSTEM ARCHITECTURE
Most physical systems that people deal with on a daily basis are
designed as a composition of modular subsystems that interact in
a few obvious and easily controlled ways. Such systems are easier
to understand, easier to monitor and control, and easier to
diagnose when faulty. For example, the different subsystems of a
modern home—electrical, heating/cooling, plumbing, telephone,
and cable—are relatively independent of each other, with only a
few important forms of coupling. In truth, there are many physical
couplings among these subsystems, but most are negligible. For
example, the electrical subsystem is a source of electromagnetic
interference to the telephone and cable subsystems, but the signal-
to-noise ratio is high enough that the effects can be ignored.
Similarly, the circulation of hot water in the plumbing system
affects the heating/cooling system, but the effect is negligible
compared to the heating/cooling subsystem’s ability to notice and
compensate. These and other physical effects are negligible
because the system has abundant resources: plenty of electrical
power, abundant heating/cooling capacity, large thermal mass,
substantial electrical and thermal insulation, plenty of
electromagnetic shielding, etc.
In such an environment of plentiful resources, control system
software designers can appropriately treat subsystems as largely
independent, with state variables encapsulated in the subsystem or
device object that has the dominant effect or “ownership” of that
state. For example, hot water temperature could be encapsulated
with a water heater object since the water heater has the dominant
effect on that state. Of course, there are some subsystem couplings
that cannot be ignored because they have intentional effects or
major side effects. For example, an electric hot water heater
depends on power from the electrical subsystem in order to
operate, so this one-way dependency must appear somewhere in
the system logic. This kind of subsystem coupling is so simple to
describe and so few in number that it’s typical for a software
designer to express it on a case-by-case basis, often in the logic of
one or two operations of a class. Figure 1 shows an ideal
decomposition by subsystem, where the only couplings are those
between a child subsystem and its parent subsystem.

2.1 Example: Home Heating System
An illustrative example of the subsystem/device approach to
control systems is the “Smalltalk Home Heating System”
described by Booch [1, chapter 8]. As Booch notes, the home
heating system naturally decomposes into relatively independent
subproblems. The heating system contains top-level objects of a
furnace, heat flow regulator, operator interface, and a home
consisting of multiple rooms. Each room has a current
temperature sensor, a desired temperature setting, a room
occupancy sensor, and a water valve.
Note that top-level software objects model the obvious physical
elements of a home heating system, and that makes sense as long
as most or all of the couplings exist within containment and/or
attachment relationships. For example, in this system there is
nothing outside of a room that affects the measurements from the
current temperature sensor, so it makes sense to encapsulate the

current temperature state within the room or its temperature
sensor.
In summary, a device/subsystem architecture is appropriate for
many everyday control systems because they exhibit simple
subsystem couplings. Such an architecture is extremely attractive
to most designers because software structure reflects hardware
structure and follows familiar subsystem-oriented decomposition.
The only danger, which this paper explores, is that designer
familiarity with this appealing architecture can lead to its use in
applications where physical couplings are complex and have little
“respect” for the hardware structure and subsystem boundaries.

2.2 Couplings Due to Physics
The limitations of a subsystem/device architecture aren’t apparent
in “everyday systems” in much the same way that the limitations
of Newtonian physics aren’t apparent in everyday experiences,
where velocity is a tiny fraction of the speed of light. In the case
of the subsystem/device architecture the limitations start to appear
in complex systems where the everyday assumptions of loose
coupling simply don’t hold. To illustrate this point, consider a
common, everyday device: a battery-powered electronic
thermostat.
The job of a thermostat is to regulate temperature by sensing the
temperature and by issuing on/off control actions to maintain
temperature within a specified range. The thermostat itself is a
self-contained hardware unit with two simple couplings: it senses
ambient temperature and it opens and closes electrical contact
between two terminals. Since we’re talking about software design,
let’s assume that this electronic thermostat has a microprocessor
running software that performs the temperature regulation. This
looks like a perfect example of a hardware device that is loosely
coupled with respect to an overall heating system, and indeed it is
if that’s an everyday home heating system.
Now consider the same task of temperature regulation, but in a
very different environment: a Mars rover. Two things make this
system very different: electrical power is extremely limited due to
battery and solar panel limitations, and fault protection is a major
concern since there are no repair technicians on Mars (as far as we
know ☺). A consequence of limited power is that temperature
regulation cannot be treated as an isolated activity; it has to be
coordinated with other power-consuming activities such as
driving, communication, and science instrument usage. Thus, as
much as we would like to think of temperature regulation as the
duty of a self-contained thermostatic unit, it can’t be designed that
way when it relies on the availability of an extremely limited
resource.
In a similar way, designing for fault protection reveals other flaws
with the idea of a loosely coupled thermostat. For example, if the
temperature sensor fails, how do you estimate ambient
temperature? Well, thanks to physics, there are other sources of
evidence about temperature that can and should be used. For
example, the recent history of the heater’s on/off state provides
important evidence about heating. The position of the Sun and its
heating effect can be predicted with a thermal model. Likewise,
power usage of nearby instruments and other devices has a
heating effect that can be predicted, provided that those power
states are accessible. Now, our once-simple thermostat has a lot
more couplings and a lot more to think about. Also, suppose that
the heater fails. How then can you control temperature? Well,
again, physics offers the clues. One way may be to turn on nearby
instruments solely for their heating effect, subject to power

availability. Another way is to reschedule activities that depend on
temperature regulation to occur during mid-day on Mars when
solar heating is at a maximum. Again, our once-simple thermostat
is being asked to exercise control that goes far beyond its original
role in the “thermal subsystem”. The very concept of a self-
contained thermostat is falling apart because its design rests on an
assumption of loose coupling that simply doesn’t hold in this
more complex domain.

3. COUPLING AND URGENCY
In a significant book that analyzed accidents in complex systems
such as Apollo 13 command module and the Three Mile Island
nuclear power plant, Perrow [4] summarized the inherent risks in
different types of systems using a Coupling/Urgency chart1, as
shown in Figure 2. The horizontal axis of coupling ranges from
linear to complex. Linear couplings are those in expected and
familiar production or maintenance sequence, and those that are
quite visible even if unplanned. Complex couplings are those of
unfamiliar sequences, or unplanned and unexpected sequences,
and either not visible or not immediately comprehensible. As
Stevens et al [5] explain, “strong coupling complicates a system
since a module is harder to understand, change, or correct by itself
if it is highly interrelated with other modules.”
The vertical axis of urgency ranges from low to high. Low
urgency systems can incorporate shocks and failures and pressures
for change without destabilization. Low urgency systems tend to
have ambiguous or perhaps flexible performance standards. High
urgency systems have more time-critical processes: they cannot
wait or stand by until attended to. Chemical reactions, as in
pharmaceutical plants, are almost instantaneous and cannot be
delayed or extended.
The placement of systems on this chart is based entirely on
Perrow’s subjective judgments because there is no standard way
to measure the two variables of coupling and urgency.
Nonetheless, the chart offers a useful qualitative comparison of
different kinds of systems, and the history of system-level
accidents supports his finding that complex couplings and high
urgency make systems more prone to mishaps.
This paper focuses on coupling as an architectural driver. While
the time-sensitive aspect of urgency is certainly important in
system design, it is not the main point of this paper.

3.1 Coupling in Space Missions
As Figure 2 shows, space missions exist in the upper right
quadrant of complex coupling and high urgency. Systems in this
quadrant are at the highest risk for system-level accidents because
they are harder to design and operate correctly.
Space missions exhibit complex coupling because many resources
are severely limited. Some limitations, such as battery energy and
solar panel power production, are due to the high cost of
launching mass into space. Smaller batteries and smaller solar
panels help reduce that cost. Other limitations such as processing
speed and instrument usage ensue from the power limitation;
running the processor at a lower clock rate and using one
instrument at a time reduces power consumption. Still other
limitations arise from the vast distances of outer space, where data

1 To more closely match computer science terminology, this paper

uses the terms ‘coupling’ and ‘urgency’ in place of Perrow’s
‘interaction’ and ‘coupling’, respectively.

communication rates fall as the square of the distance between
transmitter and receiver. That means that it takes a long time to
transmit data, and that activity typically precludes other activities
while the antenna is carefully pointed at a moving target (such as
Earth). Antenna pointing usually depends on basebody pointing,
which is another managed resource.
Coupling occurs in many ways, including coupling through shared
busses, structure, thermal proximity, grounding, environment, and
so on. Most couplings are a direct consequence of system-level
design, such as an instrument that will be damaged if it is in the
wrong mode when thrusters fire. In addition, some couplings
result from hardware design flaws that are discovered too late to
fix, prior to launch. Examples include motor commands that cause
processors to do a power-on-reset and communication busses that
lock up when the wrong combination of units is active. To
exaggerate just a bit, in a resource-limited system “everything
affects everything”.

3.2 Problems of Device/Subsystem Approach
The main problem in applying a device/subsystem architecture to
resource-limited systems is that the architecture provides no
leverage in dealing with the many non-negligible inter-subsystem
couplings. Each such coupling has to be handled as a special case,
leading to a tangle of subsystem-to-subsystem interactions hidden
behind a façade of modular decomposition. In effect, the original
architecture becomes an appealing fiction.
If a system is to be controlled efficiently then these couplings
must be taken into account, for otherwise some less efficient
scheme would have to be used in a loosely-coordinated manner.
An example of the latter in spacecraft operations has been to
reserve generous resource margins to ensure that a desired activity
succeeds in spite of its side effects on limited resources. For
example, operators may hold a 25% power margin above and
beyond the predicted needs of the planned activities. This
conservative strategy is understandable given the unforgiving
nature of outer space, but it causes a spacecraft or rover to be
significantly underutilized relative to its potential.
Interestingly, the practice of iterative development coupled with a
subsystem decomposition can lead a project into a kind of
architectural trap. Iterative development enables a team to
demonstrate early progress and gain confidence by building a
solution to a simplified problem, and then iterating to extend and
refine the design. Unfortunately, the initial simplifying
assumptions may be quite compatible with subsystem
decomposition, leading the project into an architecture that fails to
help when it is needed most—late in the development lifecycle
when high-fidelity behavior must be achieved. As new iterations
require higher fidelity behavior, new couplings that cross device
and subsystem boundaries must be handled. Each one by itself is a
small blemish on an otherwise tidy architecture, but achieving true
high-fidelity behavior for the final delivery can overshadow the
original architecture with a mess of strapped-on couplings.

4. STATE/MODEL ARCHITECTURE
If a subsystem/device architecture is problematic for resource-
limited systems, then what’s a better approach? At a minimum, it
has to be an approach that facilitates a software description of
physical interactions, since management of those interactions is a
dominant force in the design of resource-limited systems. It has to
describe how things affect each other in the physical world, and
this is exactly the role of models in the state/model architecture.

As described below, there are three kinds of effects to model:
measurement effects, command effects, and state effects. These
models exist to support state estimation and state control,
described later.
Just as the notion of model is elevated to a first-class entity, so
also is the notion of state variable. Many state variables have no
obvious encapsulating home within a subsystem-oriented
architecture because many physical influences on their values
have no “respect” for boundaries drawn by subsystem designers.
Such state variables must stand on their own, apart from
subsystems. The notion of state used here is broad, including
many kinds of physical quantities such as temperature, pressure,
switch position, device health, and position of one body relative to
another. Together, state variables and models provide the means
for describing physical interactions in software.

4.1 State Variables
In the realm of control systems, state variables are what system
engineers identify and what operators monitor and control.
Example states include the on/off position of a power switch and
the orientation of a spacecraft. “State knowledge” always has
associated uncertainty because sensors are imperfect, as are our
models of how things work. Explicit representation of uncertainty
enables estimators to be honest about the evidence and controllers
to be cautious during periods of high uncertainty.

4.2 Models
4.2.1 Measurement Effects Models
Sensors are hardware devices that produce measurements. Most
real-world sensors are designed to measure a particular physical
quantity, but they inadvertently and/or unavoidably measure other
quantities. For example, a voltage sensor will produce a voltage
measurement, but its value may be sensitive to temperature and
magnetic field strength. Its value is also sensitive to its own
calibration parameters of bias and scale factor. Finally, its value is
affected by the sensor’s health state, which may be in any of
several failure modes.
A measurement model is a mapping from state(s) to measurement.
In the example above, the voltage sensor’s measurement model is
a function of six states: voltage, temperature, magnetic field
strength, sensor bias, sensor scale factor, and sensor health. Notice
that temperature and magnetic field strength are external
influences on the voltage measurements. Hence, this measurement
model expresses two interactions that are independent of a
subsystem hierarchy.

4.2.2 Command Effects Models
Actuators generate physical effects in response to commands. In
addition to their intended effect, many actuators have unintended
and/or unavoidable side effects. For example, a command to turn
on a science instrument on a Mars rover has the desired effect of
activating the instrument, but it also draws power from a limited
supply, it causes localized heating that may affect other things
(such as the voltage sensor mentioned previously), it may generate
a magnetic field that interferes with another instrument, and it
may start transmitting on the data bus, using up part of its limited
capacity. Finally, the effects always depend on the actuator’s
health state, which may be in any of several failure modes.
A command effects model predicts the multiple effects of a
command issued to an actuator in a given state. In this example
the command effects model must predict the effect of a particular

command on the values of five states: instrument activation state,
battery power, nearby temperature, nearby magnetic field, and bus
data rate. Notice that all of these effects, except for instrument
activation, are external to the instrument. Hence, this model
expresses four couplings that would violate an idealized
subsystem hierarchy.

4.2.3 State Effects Models
In the physical world some states affect other states according to
laws of physics and/or consequences of hardware design. For
example, Boyle’s ideal gas law expresses the relation between
pressure state, volume state, and temperature state (PV = nRT).
Similarly, the voltage drop across a resistor in an electrical circuit
is a consequence of Ohm’s law (V=IR). Likewise, the open/closed
state of a valve affects flow state as well as both downstream and
upstream pressure states.
A state effects model expresses such functional relations among
states, and just as with measurement effects models and command
effects models, the effects often span subsystem boundaries.
Further, these are not necessarily just one-way effects; the ideal
gas law describes a constraint that holds among multiple
variables, any of which may be controllable or uncontrollable in a
given system.

4.3 Estimators and Controllers
The three kinds of models described above provide a disciplined
way of representing interactions that must be reasoned about in
resource-limited systems. Accordingly, the architecture should
elevate the concepts of state and models as first-class elements so
that the numerous inter-subsystem couplings can be exposed and
represented, not concealed through back-door device-to-device
and subsystem-to-subsystem connections.
Such an architecture must perform state determination and state
control somewhere, but in general it can’t be done inside device or
subsystem objects because they don’t have sole ‘ownership’ of the
states. As the preceding sections on models illustrated, for any
given state there may be different measurements from different
sensors that provide evidence about its value. Likewise, for any
given state, there may be different commands to different
actuators that can affect its value.
These simple facts suggest that estimators and controllers also
need to be first-class architectural elements, distinct from the
software objects for sensors and actuators and their aggregations.
After all, if there are multiple sources of evidence about a state’s
value, there should be one entity that combines that evidence into
an estimate. Likewise, if there are multiple ways of influencing
the value of a state, there should be one entity that has overall
responsibility for controlling that state.
Estimation and control are seen as distinct elements in this
architecture and should not be combined, as is often the case in a
subsystem approach. The simplest reason is clarity and
correctness; it is easier to design, develop, and test two software
modules where each has a single purpose than one module that
tries to do two distinct things.
The job of an estimator is to update state knowledge by
interpreting many sources of evidence—from measurements,
commands, and state variables—given models of how things
work. Evidence may be noisy, inconsistent, corrupted, and
incomplete. In contrast, the job of a controller is to issue
commands, as appropriate, in an attempt to influence the value of

a state variable to satisfy a goal. Commands may have delayed
effects and actuators may fail.
A second reason for separating estimation from control is more
subtle; when the two tasks are combined, there is a temptation to
shortcut the estimation process and never actually estimate the
state to be controlled, but rather to modify flags and counters that
the control logic “understands”. This practice leads to systems that
are hard for operators to monitor and understand because many
key states are never explicitly estimated, and so the only way to
understand them is to read the code.

4.4 Hardware Adapters
In this architecture the role of the hardware device object has been
diminished as compared to the subsystem/device architecture. Its
main role now is to provide access to the hardware sensors and
actuators. Estimators obtain measurements from sensors as inputs
to the state estimation process, and controllers submit commands
to actuators to influence physical state. In many cases, state
variables that seem to be owned by a device should not be
encapsulated in such objects because fault diagnosis reasoning
within estimators and fault response logic within controllers often
need access to such “internal” states.

4.5 Mission Data System
The state/model architecture just described is the architecture of
the Mission Data System (MDS). Although MDS is broadly
applicable to control systems, it is particularly suited for resource-
limited control systems such as unmanned spacecraft and
planetary rovers [2]. The MDS architecture can be understood in
terms of a few basic elements, as depicted in Figure 3.

• State. The MDS architecture is fundamentally state-based.
States are what system engineers identify, what software
engineers design and implement, and what operators monitor
and control. Example states include the on/off position of a
power switch and the orientation of a spacecraft. “State
knowledge” always has associated uncertainty because
sensors are imperfect, as are our models of how things work.
Explicit representation of uncertainty enables estimators to
be honest about the evidence and controllers to be cautious
during periods of high uncertainty.

• Models. Much of what makes software different from
mission to mission is domain knowledge about instruments,
actuators, sensors, wiring, plumbing and many other things.
By expressing such knowledge in inspectable models, apart
from reusable software, the task of customizing MDS for a
mission, then, becomes more a task of defining and
validating models. Importantly, measurement models,
command effects models, and state effects models provide an
architectural basis for representing couplings.

• Goals. Goals are the basis for mission operations. A goal
specifies operational intent as a constraint on the value of a
state variable during a time interval. Importantly, a goal does
not specify actions needed to accomplish it, thus leaving
options open for autonomous control mechanisms. Goals
enable operators to focus on what to accomplish rather than
how to accomplish it. Active goals live in a goal network that
specifies parent/child relationships and timing & ordering
relationships.

• State control. State control encompasses the mechanisms
devoted to goal achievement. This includes elaboration of a
goal into subgoals, scheduling of goals on state timelines,
time-based and event-based initiation of goal execution,
delegation for real-time coordinated control, and hardware
commanding.

• State determination. The task of estimating system state
requires interpretation of many sources of evidence—such as
measurements and commands—given a model of how things
work. Evidence may be noisy, inconsistent, corrupted, and
incomplete. State determination is a complicated enough job
that it is deliberately separated from state control, thereby
facilitating understandability, verification, and reuse.

5. RELATED WORK
In a 1995 joint study between NASA Ames and JPL known as the
New Millennium Autonomy Architecture Prototype (NewMAAP)
a number of existing concepts for improving flight software were
brought together in a prototype form. These concepts included
goal-based commanding, closed-loop control, model-based
diagnosis, onboard resource management, and onboard planning.
When the Deep Space One (DS-1) mission was subsequently
announced as a technology validation mission, the NewMAAP
project rapidly segued into the Remote Agent project [3]. In May
1999 the Remote Agent eXperiment (RAX) flew on DS-1 and
provided the first in-flight demonstration of the concepts. The
MDS project was established in April 1998 to define and develop
an advanced multi-mission data system that unifies the flight,
ground, and test elements in a common architecture. That
architecture is shaped with the themes described in this paper,
some of which were explored and refined by the RAX experience.

6. SUMMARY AND CONTRIBUTIONS
In the design of everyday control systems, the “divide and
conquer” approach decomposes a system into loosely coupled
subsystems that reflect traditional engineering disciplines such as
power, thermal, navigation, telecommunication, science, etc. Each
subsystem “owns” the estimation and control of particular states,
so those state variables are encapsulated within the subsystem or
its sub-subsystems, including proxy objects for devices that are
considered to be part of the subsystem. This approach is
workable—provided that the subsystems are loosely coupled—
and is appealing because it supports a work breakdown according
to engineering disciplines.
In contrast, high-risk control systems differ from everyday control
systems in that the traditional subsystems are not loosely coupled,
for two main reasons. First, in an environment where numerous
activities compete for a share of limited resources, those activities
must be coordinated in a way that is simply unnecessary when the
resources are virtually unlimited. Second, in an environment
where fault-tolerant control is a high priority, control decisions
often must extend beyond the confines of a single subsystem. In
short, the fundamental premise behind subsystem
decomposition—loose coupling—does not hold, so a design based
on such a decomposition would have to violate its own premise
numerous times to deal with couplings that cross subsystem
boundaries.
In designing for a high-risk control system, analysis of the physics
of interactions suggests the shape of a more suitable architecture.
States of the physical world clearly exist, but they do not owe

their existence to a subsystem; they simply “are”, and the job of
the control system is to estimate their values as best as possible
and control them as best as possible, even in the presence of
faults. Estimation and control both depend on knowledge of how
things work and how they fail, and that knowledge must be
expressed somewhere as models of states, commands, and
measurements.
The engineering contributions of this paper lie in five design
principles of the state/model architecture: (1) state variables and
models as first-class elements rather than subsystems; (2) explicit
use of models to express the physics effects of couplings; (3)
clean separation of state determination logic from state control
logic; (4) explicit management of physical resources (power,
memory, etc); and (5) the use of state constraints for operational
control.
Designing for high-risk systems requires a paradigm shift from
subsystem-oriented to state-oriented thinking. “Divide and
conquer” must give way to “state analysis and physics modeling”.
Managing interactions is the key to good design in this domain,
and if architecture is to be a help rather than a hindrance, it must
facilitate representation and reasoning about such interactions.
It is not the intention of this paper to criticize state encapsulation
or information hiding but rather to rethink what kinds of states are
encapsulated in what kinds of classes. In a subsystem-oriented
architecture the classes represent subsystems and devices, and the
encapsulated states are seen as states that are wholly owned and/or
wholly controlled by its subsystem. In a state-oriented architecture
some classes represent and encapsulate individual physical states
and have query, update, and notification operations for
appropriate clients. Other classes represent such clients for state
estimation, real-time control, and deliberative control. The lesson
here, in the context of high-risk control systems, is that some state
variables should not be encapsulated within subsystem objects
because there is no single subsystem having full responsibility for
the variable’s value.

7. EPILOGUE
Engineering disasters can be great learning experiences. The
1930s design of the first Tacoma Narrows Bridge followed a
popular trend toward lightness, structural grace, and flexibility. In
fact, the original design had a 25 foot deep stiffening truss, but
was later changed to an eight foot shallow plate girder, resulting
in a much lighter bridge. Although the bridge was the epitome of
artistry, it collapsed spectacularly in 1940 due to wind-induced
vibrations because aerodynamic phenomena had not been
adequately addressed in the design.
The same dangers of esthetics versus physics exist in software
design, especially since the appearance of a design in UML
diagrams (its esthetics) tends to be more visible to software
engineers than the physics at play. Another esthetic is the appeal
of a popular pattern, such as decomposition by traditional
engineering subsystem; it seems reassuring since it has worked so
well before. The fact that it clashes with the physics of
interactions is sometimes hard to see because software is so
malleable; it’s always easy to add “one more interface” to
accommodate a newly discovered need. The architectural end
result becomes an appealing fiction: a tidy set of subsystems that
hide a tangle of private, back-door interactions.
As software architects we must be careful about applying
comfortable metaphors since they have the power to lead us

astray. Object-oriented analysis is appealing because people can
engage in anthropomorphic storytelling as a design strategy. That
encourages secondary metaphors like ‘ownership’, which then
map into subsystems and encapsulation. The fact that this
approach works well in everyday control systems encourages
architects to apply it to all control system problems. With such a
mindset, it is hard to recognize when a new design problem is
qualitatively different from previous successfully solved
problems. The best antidote for this is an objective analysis of the
phenomena in play and the system-wide couplings that must be
managed; those are the keys to good design. Only after that is
done should one consider architectural styles.

8. ACKNOWLEDGEMENTS
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration. Robert
Rasmussen, chief architect of the Mission Data System, originally
identified the existence of complex interactions—and the need to
manage them architecturally—as a key driver in the MDS
state/model architecture. Erann Gat documented this driver in an
early internal document and later helped to shape the MDS state
architecture. In another internal document, Kirk Reinholtz, chief
programmer of MDS, documented the key limitation of the
subsystem/device architecture in resource-limited systems.

9. REFERENCES
[1] Booch, G. Object Oriented Design with Applications.
Benjamin/Cummings Publishing, 1991.

[2] Dvorak, D., Rasmussen, R., Reeves, G., and Sacks, A.
Software Architecture Themes in JPL’s Mission Data System.
Proceedings of the 2000 IEEE Aerospace Conference, Big Sky,
Montana, March, 2000.

[3] B. Pell, D. Bernard, S. Chien, E. Gat, N Muscettola, P.
Nayak, M. Wagner, B. Williams. An Autonomous Spacecraft
Agent Prototype. Proceedings of the First Annual Workshop on
Intelligent Agents, Marina Del Rey, CA, 1997.

[4] Perrow, C. Normal Accidents: Living with High-Risk
Technologies. Basic Books, 1984.

[5] Stevens, W., Meyers, G., and Constantine, L. Structured
Design, in Classics of Software Engineering, Yourdon Press,
1979.

Linear Complex

High

Low

COUPLING

URGENCY

Post Office

Most manufacturing

Junior college

Trade schools

Nuclear plant

Military early-warning

Space missionsChemical plants

Aircraft

Universities

Mining R&D firms

Military actions

Power grids

Airways

Dams

Rail transport

Marine transport

Sub-subsystem A3

System

Subsystem A Subsystem B

Sub-subsystem A2
Sub-subsystem A1

control,
status

control,
status

control,
status

control,
status

Sub-subsystem B3

Sub-subsystem B2
Sub-subsystem B1

Figure 1. An architecture based on subsystem decomposition rests on an assumption of loose coupling, where
interactions among subsystems are handled via hierarchical pathways of control and status. In such an architecture
state variables are encapsulated within the object that has responsibility for its estimation and control.

Figure 2. Systems that exhibit complex coupling and high urgency are considered high-risk because they are
more prone to system accidents. This chart is due to Perrow [4].

State
Control

State
Knowledge

Hardware
Adapter

Telecommand

Telemetry

Hardware

Coordinate

Goal

Report

Elaborate

Sense

State
Determination

Models

Act

Measurements Commands

State State

Commands

Figure 3. The state/model architecture of the Mission Data System emphasizes the central role of state knowledge
and models, goal-driven operation, and separation of state determination from control.

